Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve streamflow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the influence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity (namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03-0.15) and efficiency indices (10-45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve streamflow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.

On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation

Massari C;Tarpanelli A;Brocca L;
2017

Abstract

Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve streamflow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the influence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity (namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03-0.15) and efficiency indices (10-45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve streamflow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.
2017
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
remote sensing
hydrology
soil moisture
data assimilation
flood
File in questo prodotto:
File Dimensione Formato  
prod_377564-doc_169246.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Documento in Pre-print
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_377564-doc_187851.pdf

accesso aperto

Descrizione: Articolo postprint
Tipologia: Documento in Pre-print
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact