The aim of this paper is twofold: In the first part, we leverage recent results on scenario design to develop randomized algorithms for approximating the image set of a nonlinear mapping, that is, a (possibly noisy) mapping of a set via a nonlinear function. We introduce minimum-volume approximations which have the characteristic of guaranteeing a low probability of violation, i.e., we admit for a probability that some points in the image set are not contained in the approximating set, but this probability is kept below a pre-specified threshold e. In the second part of the paper, this idea is then exploited to develop a new family of randomized prediction-corrector filters. These filters represent a natural extension and rapprochement of Gaussian and set-valued filters, and bear similarities with modern tools such as particle filters.

Randomized Approximations of the Image Set of Nonlinear Mappings with Applications to Filtering

Dabbene;Fabrizio;
2015

Abstract

The aim of this paper is twofold: In the first part, we leverage recent results on scenario design to develop randomized algorithms for approximating the image set of a nonlinear mapping, that is, a (possibly noisy) mapping of a set via a nonlinear function. We introduce minimum-volume approximations which have the characteristic of guaranteeing a low probability of violation, i.e., we admit for a probability that some points in the image set are not contained in the approximating set, but this probability is kept below a pre-specified threshold e. In the second part of the paper, this idea is then exploited to develop a new family of randomized prediction-corrector filters. These filters represent a natural extension and rapprochement of Gaussian and set-valued filters, and bear similarities with modern tools such as particle filters.
2015
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Randomized algorithms; filtering; nonlinear systems; semialgebraic sets
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact