The use of novel nickel based catalysts for the catalytic hydrotreatment of pyrolytic sugars, the carbohydrate rich fraction of pine derived pyrolysis liquids, is reported. The catalysts are characterized by a high nickel loading (38 to 57 wt%), promoted by Cu, Pd, and/or Mo and a SiO2 based inorganic matrix. Experiments were carried out at 180 degrees C and 120 bar initial hydrogen pressure (room temperature) in a batch reactor set-up to gain insight in catalyst activity and product properties as a function of the catalyst composition. The most promising catalyst in terms of activity, as measured by the hydrogen uptake during reaction, was the Ni-Mo/SiO2-Al2O3 catalyst whereas the performance of the monometallic Ni/SiO2-Al2O3 catalyst was the lowest. As a result, the product oil obtained by the bimetallic Ni-Mo catalyst showed the highest H/C ratio and the lowest molecular weight of all catalysts tested. A detailed catalyst characterization study revealed that addition of Mo to the Ni catalyst suppresses the agglomeration of nickel nanoparticles during the catalytic hydrotreatment reaction.

Hydrotreatment of the carbohydrate-rich fraction of pyrolysis liquids using bimetallic Ni based catalyst: Catalyst activity and product property relations

Cannilla Catia;Bonura Giuseppe;Frusteri Francesco;
2018

Abstract

The use of novel nickel based catalysts for the catalytic hydrotreatment of pyrolytic sugars, the carbohydrate rich fraction of pine derived pyrolysis liquids, is reported. The catalysts are characterized by a high nickel loading (38 to 57 wt%), promoted by Cu, Pd, and/or Mo and a SiO2 based inorganic matrix. Experiments were carried out at 180 degrees C and 120 bar initial hydrogen pressure (room temperature) in a batch reactor set-up to gain insight in catalyst activity and product properties as a function of the catalyst composition. The most promising catalyst in terms of activity, as measured by the hydrogen uptake during reaction, was the Ni-Mo/SiO2-Al2O3 catalyst whereas the performance of the monometallic Ni/SiO2-Al2O3 catalyst was the lowest. As a result, the product oil obtained by the bimetallic Ni-Mo catalyst showed the highest H/C ratio and the lowest molecular weight of all catalysts tested. A detailed catalyst characterization study revealed that addition of Mo to the Ni catalyst suppresses the agglomeration of nickel nanoparticles during the catalytic hydrotreatment reaction.
2018
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Pyrolysis liquids
Pyrolytic sugar
Ni based catalysts
Hydrotreatment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact