The novel electronic properties emerging at interfaces between transition metal oxides, and in particular the discovery of conductivity in heterostructures composed of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new challenges and opportunities in condensed matter physics. Although the interface conductivity is stabilized when LAO matches or exceeds a critical thickness of 4 unit cells (uc), other phenomena such as a universal metallic state found on the bare surface of STO single crystals and persistent photon-triggered conductivity in otherwise insulating STO-based interfaces raise important questions about the role of the LAO overlayer and the possible relations between vacuum/STO and LAO/STO interfaces. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples complemented by resonant inelastic X-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO overlayer. In all the studied samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal field, and the response to photon irradiation bear strong similarities. Nevertheless, we report here that studied LAO/STO interfaces exhibit an instability toward an apparent 2 x 1 folding of the Fermi surface at and above a 4 uc thickness threshold, which distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO. (C) 2017 Elsevier B.V. All rights reserved.

Evolution of the SrTiO3 surface electronic state as a function of LaAlO3 overlayer thickness

Salluzzo M;
2017

Abstract

The novel electronic properties emerging at interfaces between transition metal oxides, and in particular the discovery of conductivity in heterostructures composed of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new challenges and opportunities in condensed matter physics. Although the interface conductivity is stabilized when LAO matches or exceeds a critical thickness of 4 unit cells (uc), other phenomena such as a universal metallic state found on the bare surface of STO single crystals and persistent photon-triggered conductivity in otherwise insulating STO-based interfaces raise important questions about the role of the LAO overlayer and the possible relations between vacuum/STO and LAO/STO interfaces. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples complemented by resonant inelastic X-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO overlayer. In all the studied samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal field, and the response to photon irradiation bear strong similarities. Nevertheless, we report here that studied LAO/STO interfaces exhibit an instability toward an apparent 2 x 1 folding of the Fermi surface at and above a 4 uc thickness threshold, which distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO. (C) 2017 Elsevier B.V. All rights reserved.
2017
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Strontium titanate
Lanthanum aluminate
Oxide interfaces
Oxide surfaces
Two-dimensional electron gas
Angle-resolved photoemission spectroscopy
Resonant inelastic X-ray scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact