Relative dispersion in a neutrally stratified planetary boundary layer (PBL) is investigated by means of large-eddy simulations (LES). Despite the small extension of the inertial range of scales in the simulated PBL, our Lagrangian statistics turn out to be com- patible with the Richardson t3 law for the average of square particle separation, where t is time. This emerges from the application of non-standard methods of analysis through which a precise measure of the Richardson constant was also possible. Its value is estimated as C2=0:5, in close agreement with recent experiments and three-dimensional direct numerical simulations.
The Richardson's Law in Large-Eddy Simulations of Boundary Layer flows
G Lacorata;U Rizza
2004
Abstract
Relative dispersion in a neutrally stratified planetary boundary layer (PBL) is investigated by means of large-eddy simulations (LES). Despite the small extension of the inertial range of scales in the simulated PBL, our Lagrangian statistics turn out to be com- patible with the Richardson t3 law for the average of square particle separation, where t is time. This emerges from the application of non-standard methods of analysis through which a precise measure of the Richardson constant was also possible. Its value is estimated as C2=0:5, in close agreement with recent experiments and three-dimensional direct numerical simulations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.