Remanence magnetization plots (e.g., Henkel or delta M plots) have been extensively used as a straightforward way to determine the presence and intensity of dipolar and exchange interactions in assemblies of magnetic nanoparticles or single domain grains. Their evaluation is particularly important in functional materials whose performance is strongly affected by the intensity of interparticle interactions, such as patterned recording media and nanostructured permanent magnets, as well as in applications such as hyperthermia and magnetic resonance imaging. Here, we demonstrate that delta M plots may be misleading when the nanoparticles do not have a homogeneous internal magnetic configuration. Substantial dips in the delta M plots of gamma-Fe2O3 nanoparticles isolated by thick SiO2 shells indicate the presence of demagnetizing interactions, usually identified as dipolar interactions. results, however, demonstrate that it is the inhomogeneous spin structure of the nanoparticles, as most clearly evidenced by Mossbauer measurements, that has a pronounced effect on the delta M plots, leading to features remarkably similar to those produced by dipolar interactions. X-ray diffraction results combined with magnetic characterization indicate that this inhomogeneity is due to the presence of surface structural (and spin) disorder. Monte Carlo simulations unambiguously corroborate the critical role of the internal magnetic structure in the delta M plots. Our findings constitute a cautionary tale on the widespread use of remanence plots to assess interparticle interactions as well as offer new perspectives in the use of Henkel and delta M plots to quantify the rather elusive inhomogeneous magnetization states in nanoparticles.

Remanence Plots as a Probe of Spin Disorder in Magnetic Nanoparticles

Peddis Davide;
2017

Abstract

Remanence magnetization plots (e.g., Henkel or delta M plots) have been extensively used as a straightforward way to determine the presence and intensity of dipolar and exchange interactions in assemblies of magnetic nanoparticles or single domain grains. Their evaluation is particularly important in functional materials whose performance is strongly affected by the intensity of interparticle interactions, such as patterned recording media and nanostructured permanent magnets, as well as in applications such as hyperthermia and magnetic resonance imaging. Here, we demonstrate that delta M plots may be misleading when the nanoparticles do not have a homogeneous internal magnetic configuration. Substantial dips in the delta M plots of gamma-Fe2O3 nanoparticles isolated by thick SiO2 shells indicate the presence of demagnetizing interactions, usually identified as dipolar interactions. results, however, demonstrate that it is the inhomogeneous spin structure of the nanoparticles, as most clearly evidenced by Mossbauer measurements, that has a pronounced effect on the delta M plots, leading to features remarkably similar to those produced by dipolar interactions. X-ray diffraction results combined with magnetic characterization indicate that this inhomogeneity is due to the presence of surface structural (and spin) disorder. Monte Carlo simulations unambiguously corroborate the critical role of the internal magnetic structure in the delta M plots. Our findings constitute a cautionary tale on the widespread use of remanence plots to assess interparticle interactions as well as offer new perspectives in the use of Henkel and delta M plots to quantify the rather elusive inhomogeneous magnetization states in nanoparticles.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
magnetic nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 67
social impact