A multiple scattering inversion procedure for the aerosol extinction coefficient profile retrieval and error assessment in the oxygen A-band, for passive remote sensing instruments, has been developed. The procedure has been applied to SCIAMACHY nadir simulated measurements to investigate its effectiveness in the troposphere. The inversion procedure consists of a multiple scattering Forward Model, an inversion method and a complete sensitivity and error assessment tool. The Forward Model is based on LIDORT code; the inversion method, the sensitivity study and the complete error assessment are based on Optimal Estimation. The sensitivity and error analysis has been derived to investigate the profile retrieval errors due to the uncertainty of different aerosol optical properties, molecular and surface parameters. The analysis confirms that the profile retrieval accuracy and vertical resolution are strongly dependent on the oxygen A-band spectral resolution. The moderately high SClAMACHY spectral resolution (0.4 nm in the oxygen A-band) results in distinguishing a maximum of three aerosol layers in troposphere. The SCIAMACHY tropospheric aerosol profile retrieval is shown to be highly sensitive to aerosol optical properties as phase function and single scattering albedo. The sensitivity study reveals an improvement of information content increasing the solar zenith angle and decreasing the surface albedo. As regards the forward model, negligible errors occur as the number of streams exceeds 6. (C) 2005 Elsevier Ltd. All rights reserved.

Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case: SCIAMACHY nadir simulated measurements.

M Cervino
2006

Abstract

A multiple scattering inversion procedure for the aerosol extinction coefficient profile retrieval and error assessment in the oxygen A-band, for passive remote sensing instruments, has been developed. The procedure has been applied to SCIAMACHY nadir simulated measurements to investigate its effectiveness in the troposphere. The inversion procedure consists of a multiple scattering Forward Model, an inversion method and a complete sensitivity and error assessment tool. The Forward Model is based on LIDORT code; the inversion method, the sensitivity study and the complete error assessment are based on Optimal Estimation. The sensitivity and error analysis has been derived to investigate the profile retrieval errors due to the uncertainty of different aerosol optical properties, molecular and surface parameters. The analysis confirms that the profile retrieval accuracy and vertical resolution are strongly dependent on the oxygen A-band spectral resolution. The moderately high SClAMACHY spectral resolution (0.4 nm in the oxygen A-band) results in distinguishing a maximum of three aerosol layers in troposphere. The SCIAMACHY tropospheric aerosol profile retrieval is shown to be highly sensitive to aerosol optical properties as phase function and single scattering albedo. The sensitivity study reveals an improvement of information content increasing the solar zenith angle and decreasing the surface albedo. As regards the forward model, negligible errors occur as the number of streams exceeds 6. (C) 2005 Elsevier Ltd. All rights reserved.
2006
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 40
social impact