A hydro-kinetic scheme for water-like fluids, based on a lattice version of the Boltzmann equation, is presented and applied to the popular TIP3P model of liquid water. By proceeding in much larger steps than molecular dynamics, the scheme proves to be very effective in attaining global minima of classical pair potentials with directional and radial interactions, as confirmed by further simulations using the three-dimensional Ben-Naim water potential. The scheme is shown to reproduce the propensity of water to form nearly four hydrogen bonds per molecule, as well as their statistical distribution in the presence of thermal fluctuations, at a linear cost of computational time with the system size. This journal is © the Partner Organisations 2014.

A hydro-kinetic scheme for the dynamics of hydrogen bonds in water-like fluids

Melchionna Simone;Succi Sauro;Succi Sauro
2014

Abstract

A hydro-kinetic scheme for water-like fluids, based on a lattice version of the Boltzmann equation, is presented and applied to the popular TIP3P model of liquid water. By proceeding in much larger steps than molecular dynamics, the scheme proves to be very effective in attaining global minima of classical pair potentials with directional and radial interactions, as confirmed by further simulations using the three-dimensional Ben-Naim water potential. The scheme is shown to reproduce the propensity of water to form nearly four hydrogen bonds per molecule, as well as their statistical distribution in the presence of thermal fluctuations, at a linear cost of computational time with the system size. This journal is © the Partner Organisations 2014.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
simulation
water
lattice boltzmann
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/334963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact