The Valsalva maneuver (VM) consisting in a forced expiration against closed airways is one of the most popular clinical tests of the autonomic nervous system function. When properly performed by a healthy subject, it features four characteristic phases of arterial blood pressure (BP) and heart rate (HR) variations, based on the magnitude of which the autonomic function may be assessed qualitatively and quantitatively. In patients with some disorders or in healthy patients subject to specific conditions, the pattern of BP and HR changes during the execution of the Valsalva maneuver may, however, differ from the typical sinusoidal-like pattern. Several types of such abnormal responses are well known and correspond to specific physiological conditions. In this paper, we use our earlier mathematical model of the cardiovascular response to the Valsalva maneuver to show that such pathological responses may be simulated by changing individual model parameters with a clear physiological meaning. The simulation results confirm the adaptability of our model and its usefulness for diagnostic or educational purposes.

Modeling Pathological Hemodynamic Responses to the Valsalva Maneuver

Thomaseth K;
2017

Abstract

The Valsalva maneuver (VM) consisting in a forced expiration against closed airways is one of the most popular clinical tests of the autonomic nervous system function. When properly performed by a healthy subject, it features four characteristic phases of arterial blood pressure (BP) and heart rate (HR) variations, based on the magnitude of which the autonomic function may be assessed qualitatively and quantitatively. In patients with some disorders or in healthy patients subject to specific conditions, the pattern of BP and HR changes during the execution of the Valsalva maneuver may, however, differ from the typical sinusoidal-like pattern. Several types of such abnormal responses are well known and correspond to specific physiological conditions. In this paper, we use our earlier mathematical model of the cardiovascular response to the Valsalva maneuver to show that such pathological responses may be simulated by changing individual model parameters with a clear physiological meaning. The simulation results confirm the adaptability of our model and its usefulness for diagnostic or educational purposes.
2017
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
baroreflex
autonomic function
blood pressure
heart rate variations
hemodynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact