We investigate the time evolution towards the asymptotic steady state of a one-dimensional interacting system after a quantum quench. We show that at finite times the latter induces entanglement between right- and left-moving density excitations, encoded in their cross-correlators, which vanishes in the long-time limit. This behavior results in a universal time decay t-2 of the system spectral properties, in addition to nonuniversal power-law contributions typical of Luttinger liquids. Importantly, we argue that the presence of quench-induced entanglement clearly emerges in transport properties, such as charge and energy currents injected in the system from a biased probe and determines their long-time dynamics. In particular, the energy fractionalization phenomenon turns out to be a promising platform to observe the universal power-law decay t-2 induced by entanglement and represents a novel way to study the corresponding relaxation mechanism.

Quench-induced entanglement and relaxation dynamics in Luttinger liquids

Cavaliere F;Carrega M;Sassetti M
2017

Abstract

We investigate the time evolution towards the asymptotic steady state of a one-dimensional interacting system after a quantum quench. We show that at finite times the latter induces entanglement between right- and left-moving density excitations, encoded in their cross-correlators, which vanishes in the long-time limit. This behavior results in a universal time decay t-2 of the system spectral properties, in addition to nonuniversal power-law contributions typical of Luttinger liquids. Importantly, we argue that the presence of quench-induced entanglement clearly emerges in transport properties, such as charge and energy currents injected in the system from a biased probe and determines their long-time dynamics. In particular, the energy fractionalization phenomenon turns out to be a promising platform to observe the universal power-law decay t-2 induced by entanglement and represents a novel way to study the corresponding relaxation mechanism.
2017
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact