Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from 1H spins in a glycerol droplet placed directly on top of the 20 mu m SQUID loops. (C) 2014 AIP Publishing LLC.
Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications
Vinante A;Falferi P
2014
Abstract
Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from 1H spins in a glycerol droplet placed directly on top of the 20 mu m SQUID loops. (C) 2014 AIP Publishing LLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


