Memristors and memristive devices represent a splendid area of research due to the unique possibilities for the realization of new types of computer hardware elements and mimicking several essential properties of the nervous system of living beings. The organic memristive device was developed as an electronic single-device analogue of the synapse, suitable for the realization of circuits allowing Hebbian type of learning. This work is dedicated to the realization of the active channel of organic memristive devices by polyelectrolyte self-assembling (layer-by-layer technique). Stable and reproducible electrical characteristics of the device were obtained when the thickness of the active channel was more than seven bilayers. The device revealed rectifying behaviour and the presence of hysteresis important properties for the realization of neuromorphic systems with synapse-like properties of the individual elements. Compared to previously reported results on organic memristive devices fabricated using other methods, the present device does not require any additional doping that is usually performed through acid treatment. Such a behaviour is extremely important for the cases in which biological systems (nervous cells, slime mould, etc.) must be interfaced with the system of organic memristive devices, since acid treatment can kill living beings.

Polyaniline-Based Organic Memristive Device Fabricated by Layer-by-Layer Deposition Technique

Erokhin Victor
2015

Abstract

Memristors and memristive devices represent a splendid area of research due to the unique possibilities for the realization of new types of computer hardware elements and mimicking several essential properties of the nervous system of living beings. The organic memristive device was developed as an electronic single-device analogue of the synapse, suitable for the realization of circuits allowing Hebbian type of learning. This work is dedicated to the realization of the active channel of organic memristive devices by polyelectrolyte self-assembling (layer-by-layer technique). Stable and reproducible electrical characteristics of the device were obtained when the thickness of the active channel was more than seven bilayers. The device revealed rectifying behaviour and the presence of hysteresis important properties for the realization of neuromorphic systems with synapse-like properties of the individual elements. Compared to previously reported results on organic memristive devices fabricated using other methods, the present device does not require any additional doping that is usually performed through acid treatment. Such a behaviour is extremely important for the cases in which biological systems (nervous cells, slime mould, etc.) must be interfaced with the system of organic memristive devices, since acid treatment can kill living beings.
2015
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
organic memristive device
resistance switching
polyaniline
polyethylene oxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact