The effects of various fabrication parameters of our Mask Projection Excimer Laser StereoLithography (MPExSL) system were investigated. We demonstrate that laser parameters directly change the physical properties (stiffness, thermal degradation, and height/thickness) of the poly(propylene fumarate) (PFF) scaffold structures. The tested parameters were the number of pulses, fluence per pulse and laser repetition rate. We present a four-order tuning capability of MPExSL-fabricated structures' stiffness without altering the resin composition or using cumbersome post-treatment procedures. Thermogravimetric analysis and differential scanning calorimetry confirmed this tuning capability. Prototype-segmented scaffold designs are presented and analyzed to further expand the concept and exploit this in situ stiffness tuning capability of the scaffolds for tissue engineering and regenerative medicine applications. (C) 2015 Elsevier B.V. All rights reserved.

Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation

Brandi Fernando;
2015

Abstract

The effects of various fabrication parameters of our Mask Projection Excimer Laser StereoLithography (MPExSL) system were investigated. We demonstrate that laser parameters directly change the physical properties (stiffness, thermal degradation, and height/thickness) of the poly(propylene fumarate) (PFF) scaffold structures. The tested parameters were the number of pulses, fluence per pulse and laser repetition rate. We present a four-order tuning capability of MPExSL-fabricated structures' stiffness without altering the resin composition or using cumbersome post-treatment procedures. Thermogravimetric analysis and differential scanning calorimetry confirmed this tuning capability. Prototype-segmented scaffold designs are presented and analyzed to further expand the concept and exploit this in situ stiffness tuning capability of the scaffolds for tissue engineering and regenerative medicine applications. (C) 2015 Elsevier B.V. All rights reserved.
2015
Istituto Nazionale di Ottica - INO
Stereolithography
Excimer laser
Biodegradability
Poly(propylene fumarate)
Scaffolds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact