Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid associated with endo-lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2 in vacuolar acidification and morphology during ABA-induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch-clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2 does not affect the activity of vacuolar H+-pyrophosphatase or vacuolar H+-ATPase. Instead, PI(3,5)P2 at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+ pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC-a), a member of the anion/H+ exchanger family formerly implicated in stomatal movements in Arabidopsis H+-dependent currents were absent in clc-a knock-out vacuoles, and canonical CLC-a-dependent nitrate/H+ antiport was inhibited by low concentrations of PI(3,5)P2 Finally, using the pH indicator probe BCECF, we show that CLC-a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2 and advance our knowledge about the regulation of vacuolar ion transport.

The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H exchange activity.

Carpaneto A;Boccaccio A;Lagostena L;Di Zanni E;
2017

Abstract

Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid associated with endo-lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2 in vacuolar acidification and morphology during ABA-induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch-clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2 does not affect the activity of vacuolar H+-pyrophosphatase or vacuolar H+-ATPase. Instead, PI(3,5)P2 at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+ pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC-a), a member of the anion/H+ exchanger family formerly implicated in stomatal movements in Arabidopsis H+-dependent currents were absent in clc-a knock-out vacuoles, and canonical CLC-a-dependent nitrate/H+ antiport was inhibited by low concentrations of PI(3,5)P2 Finally, using the pH indicator probe BCECF, we show that CLC-a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2 and advance our knowledge about the regulation of vacuolar ion transport.
2017
Istituto di Biofisica - IBF
patch-clamp; phosphoinositide; proton antiport; vacuolar acidification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact