The acceleration of dense targets driven by the radiation pressure of high-intensity lasers leads to a Rayleigh-Taylor instability (RTI) with rippling of the interaction surface. Using a simple model it is shown that the self-consistent modulation of the radiation pressure caused by a sinusoidal rippling affects substantially the wave vector spectrum of the RTI, depending on the laser polarization. The plasmonic enhancement of the local field when the rippling period is close to a laser wavelength sets the dominant RTI scale. The nonlinear evolution is investigated by three-dimensional simulations, which show the formation of stable structures with "wallpaper" symmetry.

Laser-driven Rayleigh-Taylor instability: Plasmonic effects and three-dimensional structures

Sgattoni A;Sinigardi S;Pegoraro F;Macchi A
2015

Abstract

The acceleration of dense targets driven by the radiation pressure of high-intensity lasers leads to a Rayleigh-Taylor instability (RTI) with rippling of the interaction surface. Using a simple model it is shown that the self-consistent modulation of the radiation pressure caused by a sinusoidal rippling affects substantially the wave vector spectrum of the RTI, depending on the laser polarization. The plasmonic enhancement of the local field when the rippling period is close to a laser wavelength sets the dominant RTI scale. The nonlinear evolution is investigated by three-dimensional simulations, which show the formation of stable structures with "wallpaper" symmetry.
2015
Istituto Nazionale di Ottica - INO
gratings; pulses; symmetry; surfaces; waves
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? ND
social impact