The work is addressed to investigating the potentiality of calcination of organic-inorganic (O-I) hybrids as a feasible approach to produce silica particles, at mild temperature conditions and with tailored morphology. Two different innovative hybrid systems were obtained through sol-gel process with a siloxane content ranging from 6 to 26wt%. The two O-I hybrids differed for i) the organic matrix (methacrylic or epoxy), ii) its crosslinking mechanism (photopolymerization for methacrylic systems or thermal cold-cure for epoxy systems) and iii) the rate ratio between sol-gel and crosslinking reactions. Different characterization techniques were used to understand the effect of composition and curing method on the morphology of the silica obtained from O-I hybrids after calcination in air. The results confirm the morphology and properties of silica particles in terms of surface and porosity may be tailored over a wide range by varying the composition and nature of organic and inorganic precursors of hybrids.

Morphological characterization of silica obtained by calcination of methacrylic and epoxy - silica hybrid systems

Tescione F;Buonocore G G;Lavorgna M;
2016

Abstract

The work is addressed to investigating the potentiality of calcination of organic-inorganic (O-I) hybrids as a feasible approach to produce silica particles, at mild temperature conditions and with tailored morphology. Two different innovative hybrid systems were obtained through sol-gel process with a siloxane content ranging from 6 to 26wt%. The two O-I hybrids differed for i) the organic matrix (methacrylic or epoxy), ii) its crosslinking mechanism (photopolymerization for methacrylic systems or thermal cold-cure for epoxy systems) and iii) the rate ratio between sol-gel and crosslinking reactions. Different characterization techniques were used to understand the effect of composition and curing method on the morphology of the silica obtained from O-I hybrids after calcination in air. The results confirm the morphology and properties of silica particles in terms of surface and porosity may be tailored over a wide range by varying the composition and nature of organic and inorganic precursors of hybrids.
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Organic-Inorganic hybrids
photopolymerizable acrylic resins
cold-cured epoxy resins
co-continuous nanophases
nanostructured materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/335810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact