The active volcano of Ischia, an island off-shore the city of Naples, Southern Italy, has a discontinuous volcanic activity characterized by caldera-forming paroxysmal eruptions, lava flows, and lava domes, and thus offers the opportunity to study the complexity of magma storage, differentiation, and extraction mechanisms in a long-lived magma reservoir. The overall geochemical composition of erupted magmas varies from shoshonite to latite and trachyte/trachyphonolite. Their Sr and Nd, isotope composition variation is typical of subduction-related magmas, akin to other potassic magmas of the Neapolitan District, and there is a complete overlap of radiogenic isotope composition among shoshonite, latite, and trachyte/trachyphonolite. The lack of systematic radiogenic isotope covariation during differentiation suggests that the radiogenic isotope variability could be a signature of each magma pulse that subsequently evolved in a closed-system environment. Erupted magmas record a recurrent evolutionary process consisting of two-step fractional crystallization along similar liquid lines of descent for each magma pulse, suggesting near steady-state magma chamber conditions with balanced alternating periods of replenishment, differentiation, and eruption. The dominant role of fractionating feldspars determines a significant depletion of Sr (<10 ppm) coupled with high Rb/Sr (>200) in the residual trachyte magma.
Geochemical and radiogenic isotope probes of Ischia volcano, Southern Italy: Constraints on magma chamber dynamics and residence time
Conticelli Sandro;
2017
Abstract
The active volcano of Ischia, an island off-shore the city of Naples, Southern Italy, has a discontinuous volcanic activity characterized by caldera-forming paroxysmal eruptions, lava flows, and lava domes, and thus offers the opportunity to study the complexity of magma storage, differentiation, and extraction mechanisms in a long-lived magma reservoir. The overall geochemical composition of erupted magmas varies from shoshonite to latite and trachyte/trachyphonolite. Their Sr and Nd, isotope composition variation is typical of subduction-related magmas, akin to other potassic magmas of the Neapolitan District, and there is a complete overlap of radiogenic isotope composition among shoshonite, latite, and trachyte/trachyphonolite. The lack of systematic radiogenic isotope covariation during differentiation suggests that the radiogenic isotope variability could be a signature of each magma pulse that subsequently evolved in a closed-system environment. Erupted magmas record a recurrent evolutionary process consisting of two-step fractional crystallization along similar liquid lines of descent for each magma pulse, suggesting near steady-state magma chamber conditions with balanced alternating periods of replenishment, differentiation, and eruption. The dominant role of fractionating feldspars determines a significant depletion of Sr (<10 ppm) coupled with high Rb/Sr (>200) in the residual trachyte magma.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


