Machine learning techniques represent the third-generation of clinical neuroimaging studies where the principal interest is not related to describe anatomical changes of a neurological disorder, but to evaluate if a multivariate approach may use these abnormalities to predict the correct classification of previously unseen clinical cohort. In the next few years, Machine learning will revolutionize clinical practice of Parkinson's disease, but enthusiasm should be turned down before removing some important barriers.

Machine learning on Parkinson's disease? Let's translate into clinical practice.

Cerasa Antonio
2016

Abstract

Machine learning techniques represent the third-generation of clinical neuroimaging studies where the principal interest is not related to describe anatomical changes of a neurological disorder, but to evaluate if a multivariate approach may use these abnormalities to predict the correct classification of previously unseen clinical cohort. In the next few years, Machine learning will revolutionize clinical practice of Parkinson's disease, but enthusiasm should be turned down before removing some important barriers.
2016
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
Machine learning
Neuroimaging
Parkinson
Clinical application
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact