This study aims at identifying compositional and architectural (pore size and distribution) parameters of biocompatible scaffolds, which can be best suitable for both osteoblasts and endothelial cells to produce optimized 3D cocultured constructs. Spongy scaffolds are prepared using poly(vinyl alcohol) (PVA) and gelatin (G) at different weight compositions (PVA/G range: 100/0-50/50, w/w) via emulsion and freeze-drying. The higher the gelatin content, the larger is the volume occupied by higher size pores. Human umbilical vein endothelial cells and human mesenchymal stromal cells are independently differentiated on the scaffolds to select the best candidate for the coculture. The results of metabolic activity and histology on single plat-forms show both cell- and material-type dependent outcomes. PVA/G 80/20 scaffolds are finally selected and allow the formation of mineralized matrix containing organized endothelial-like structures. This study highlights the need for systematic investigations on multifactorial parameters of scaffolds to improve vascularized bone substitutes.

Pore Size Distribution and Blend Composition Affect In Vitro Prevascularized Bone Matrix Formation on Poly(Vinyl Alcohol)/Gelatin Sponges

Roberto Pini;
2017

Abstract

This study aims at identifying compositional and architectural (pore size and distribution) parameters of biocompatible scaffolds, which can be best suitable for both osteoblasts and endothelial cells to produce optimized 3D cocultured constructs. Spongy scaffolds are prepared using poly(vinyl alcohol) (PVA) and gelatin (G) at different weight compositions (PVA/G range: 100/0-50/50, w/w) via emulsion and freeze-drying. The higher the gelatin content, the larger is the volume occupied by higher size pores. Human umbilical vein endothelial cells and human mesenchymal stromal cells are independently differentiated on the scaffolds to select the best candidate for the coculture. The results of metabolic activity and histology on single plat-forms show both cell- and material-type dependent outcomes. PVA/G 80/20 scaffolds are finally selected and allow the formation of mineralized matrix containing organized endothelial-like structures. This study highlights the need for systematic investigations on multifactorial parameters of scaffolds to improve vascularized bone substitutes.
2017
bone matrix
PVA
pore size distribution
Mercury intrusion porosimetry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact