This paper presents a chemo-mechano-biological framework for arterialphysiopathology. The model accounts for the fine remodelling in the multi-scale hierarchical arrangement of tissue constituents and for the diffusion of molecular species involved in cell-cell signalling pathways. Effects in terms of alterations in arterial compliance are obtained. A simple instructive example is introduced. Although oversimplified with respect to realistic case studies, the proposed application mimics the biochemical activity of matrix metallo- proteinases, transforming growth factors beta and interleukins on tissue remodelling. Effects of macrophage infiltration, of intimal thickening and of a healing phase are investigated, highlighting the corresponding influence on arterial compliance. The obtained results show that the present approach is able to capture changes in arterial mechanics as a consequence of the alterations in tissue biochemical environment and cellular activity, as well as to incorporate the protective role of both autoimmune responses and pharmacological treatments.

A chemo-mechano-biological formulation for the effects of biomechemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling

G Pontrelli;
2017

Abstract

This paper presents a chemo-mechano-biological framework for arterialphysiopathology. The model accounts for the fine remodelling in the multi-scale hierarchical arrangement of tissue constituents and for the diffusion of molecular species involved in cell-cell signalling pathways. Effects in terms of alterations in arterial compliance are obtained. A simple instructive example is introduced. Although oversimplified with respect to realistic case studies, the proposed application mimics the biochemical activity of matrix metallo- proteinases, transforming growth factors beta and interleukins on tissue remodelling. Effects of macrophage infiltration, of intimal thickening and of a healing phase are investigated, highlighting the corresponding influence on arterial compliance. The obtained results show that the present approach is able to capture changes in arterial mechanics as a consequence of the alterations in tissue biochemical environment and cellular activity, as well as to incorporate the protective role of both autoimmune responses and pharmacological treatments.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
arterial multiphysics
multiscale constitutive modelling
microscale transport mechanisms
tissue remodelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact