Because of their extremely high instantaneous powers, femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur on subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long-term behavior of coloration. In this work, we probe the evolution of color centers generated by femtosecond laser radiation in potassium chloride and potassium bromide single crystals on time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we follow the changes in coloration due to individual or multiple femtosecond pulses and the evolution of that coloration for long times after femtosecond laser radiation is terminated.

Color center formation in KCl and KBr single crystals with femtosecond laser pulses

S Orlando
2007

Abstract

Because of their extremely high instantaneous powers, femtosecond lasers can color many nominally transparent materials. Although the excitations responsible for this defect formation occur on subpicosecond time scales, subsequent interactions between the resulting electronic and lattice defects complicate the evolution of color center formation and decay. These interactions must be understood in order to account for the long-term behavior of coloration. In this work, we probe the evolution of color centers generated by femtosecond laser radiation in potassium chloride and potassium bromide single crystals on time scales from microseconds to hundreds of seconds. By using an appropriately chosen probe laser focused through the femtosecond laser spot, we follow the changes in coloration due to individual or multiple femtosecond pulses and the evolution of that coloration for long times after femtosecond laser radiation is terminated.
2007
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
color centers
ultra-short laser
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact