A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries complete information about the operation itself. Tomographically faithful states are a necessary ingredient for the tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes.

Characterization of tomographically faithful states in terms of their Wigner functions

Sacchi MF
2005

Abstract

A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries complete information about the operation itself. Tomographically faithful states are a necessary ingredient for the tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/3363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact