Cellulases are a important family of hydrolytic enzymes which catalyze the bond of cellulose and other related cello-oligosaccharide derivates. Industrial applications require enzymes highly stable and economically viable in terms of reusability. These costs can be reduced by immobilizing the cellulases, offering a potential solution through enzyme recycling and easy recovery. The covalent immobilization of enzymes is reported here: one is commercial cellulase from Aspergillus niger and other one is recombinant enzyme, named CelStrep it because was isolated from a new cellulolytic strain, Streptomyces sp. G12,. The optimal pH for binding is 4.6 for both cellulases and the optimal enzyme concentrations are 1 mg/mL and 5 mg/mL respectively. The support for immobilization is a poliacrylic matrix. Experiments carried out in this work show positive results of enzyme immobilization in terms of efficiency and stability and confirm the economic and biotechnical advantages of enzyme immobilization for a wide range of industrial applications.

Immobilization of two endoglucanases from different sources

Licia Lama;
2017

Abstract

Cellulases are a important family of hydrolytic enzymes which catalyze the bond of cellulose and other related cello-oligosaccharide derivates. Industrial applications require enzymes highly stable and economically viable in terms of reusability. These costs can be reduced by immobilizing the cellulases, offering a potential solution through enzyme recycling and easy recovery. The covalent immobilization of enzymes is reported here: one is commercial cellulase from Aspergillus niger and other one is recombinant enzyme, named CelStrep it because was isolated from a new cellulolytic strain, Streptomyces sp. G12,. The optimal pH for binding is 4.6 for both cellulases and the optimal enzyme concentrations are 1 mg/mL and 5 mg/mL respectively. The support for immobilization is a poliacrylic matrix. Experiments carried out in this work show positive results of enzyme immobilization in terms of efficiency and stability and confirm the economic and biotechnical advantages of enzyme immobilization for a wide range of industrial applications.
2017
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
Aspergillus. niger
endoglucanases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact