We investigate the dynamics of alginate gels, an important class of biopolymer-based viscoelastic materials, by combining mechanical tests and non-conventional, time-resolved light scattering methods. Two relaxation modes are observed upon applying a compressive or shear stress. Dynamic light scattering and diffusing-wave spectroscopy measurements reveal that these modes are associated with discontinuous rearrangement events that restructure the gel network via anomalous, non-diffusive microscopic dynamics. We show that these dynamics are due to both thermal activation and internal stress stored during gelation and propose a scenario where a hierarchy of cross-links with different life times is responsible for the observed complex behavior. Measurements at various temperatures and sample ages are presented to support this scenario.
Hierarchical cross-linking in physical alginate gels: a rheological and dynamic light scattering investigation
Larobina Domenico;
2013
Abstract
We investigate the dynamics of alginate gels, an important class of biopolymer-based viscoelastic materials, by combining mechanical tests and non-conventional, time-resolved light scattering methods. Two relaxation modes are observed upon applying a compressive or shear stress. Dynamic light scattering and diffusing-wave spectroscopy measurements reveal that these modes are associated with discontinuous rearrangement events that restructure the gel network via anomalous, non-diffusive microscopic dynamics. We show that these dynamics are due to both thermal activation and internal stress stored during gelation and propose a scenario where a hierarchy of cross-links with different life times is responsible for the observed complex behavior. Measurements at various temperatures and sample ages are presented to support this scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.