In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cations was studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu2+) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu2+ concentration and exposure time, were further validated by comparing the prediction of the model with another set of independent measurement; here, the depletion of Cu2+ ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends. (C) 2014 Elsevier B.V. All rights reserved.

Modeling of the reticulation kinetics of alginate/pluronic blends for biomedical applications

Larobina Domenico;
2014

Abstract

In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cations was studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu2+) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu2+ concentration and exposure time, were further validated by comparing the prediction of the model with another set of independent measurement; here, the depletion of Cu2+ ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends. (C) 2014 Elsevier B.V. All rights reserved.
2014
Pluronic
Alginate
Reticulation
Modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact