The copper protein azurin, due to the peculiar coupling of its optical and vibronic properties with electron transfer (ET) and its biorecognition capabilities, is a very promising candidate for bioelectronic, bio-optoelectronic and biosensor applications. However, a complete understanding of the fundamental processes relating azurin ET, and its optical and vibronic characteristics with the charge transport mechanisms occurring in proteins bound to a conductive surface, the typical scenario for a biosensor or bioelectronic component, is still lacking. We studied azurin proteins bound to a gold electrode surface by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy (STM-TERS). Robust TER spectra were obtained, and the protein's vibronic response under optical excitation in resonance with its ligand-to-metal charge transfer band was found to be affected by the tunneling parameters, indicating a direct involvement of the active site vibrations in the electron transport process.

Vibrational Changes Induced by Electron Transfer in Surface Bound Azurin Metalloprotein Studied by Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy

Chiara Baldacchini;
2017

Abstract

The copper protein azurin, due to the peculiar coupling of its optical and vibronic properties with electron transfer (ET) and its biorecognition capabilities, is a very promising candidate for bioelectronic, bio-optoelectronic and biosensor applications. However, a complete understanding of the fundamental processes relating azurin ET, and its optical and vibronic characteristics with the charge transport mechanisms occurring in proteins bound to a conductive surface, the typical scenario for a biosensor or bioelectronic component, is still lacking. We studied azurin proteins bound to a gold electrode surface by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy (STM-TERS). Robust TER spectra were obtained, and the protein's vibronic response under optical excitation in resonance with its ligand-to-metal charge transfer band was found to be affected by the tunneling parameters, indicating a direct involvement of the active site vibrations in the electron transport process.
2017
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
STM-TERS
azur
metallo-proteins
charge transfer
electron-phonon interaction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact