Highly porous ferroelectric ceramics possess remarkably less polarizability than dense ceramics; instead they display high tunability of various physical properties. Particularly, the shape and orientation of pores as well as the total porosity exhibit a great effect on the polarization-switching dynamics. In the present work, finite-element simulations of the electric-field distributions and related statistical distributions of local switching times are analysed and compared with the switching characteristics of porous lead zirconate titanate ceramics, extracted from the experiment by means of the inhomogeneous field mechanism model of polarization switching. Surprisingly, the simulated statistical field-distributions turn out to be virtually independent of the pore-size distribution; however, they are sensitive to the anisometric shape and orientation of the pores. Additionally, they exhibit notable broadening with increasing porosity; an effect confirmed by experimental observations.

Polarization-switching dynamics in bulk ferroelectrics with isometric and oriented anisometric pores

Galassi C;
2017

Abstract

Highly porous ferroelectric ceramics possess remarkably less polarizability than dense ceramics; instead they display high tunability of various physical properties. Particularly, the shape and orientation of pores as well as the total porosity exhibit a great effect on the polarization-switching dynamics. In the present work, finite-element simulations of the electric-field distributions and related statistical distributions of local switching times are analysed and compared with the switching characteristics of porous lead zirconate titanate ceramics, extracted from the experiment by means of the inhomogeneous field mechanism model of polarization switching. Surprisingly, the simulated statistical field-distributions turn out to be virtually independent of the pore-size distribution; however, they are sensitive to the anisometric shape and orientation of the pores. Additionally, they exhibit notable broadening with increasing porosity; an effect confirmed by experimental observations.
2017
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
porous ferroelectrics
polarization-switching dynamics
oriented anisometric pores
statistical field-distributions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/336905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 36
social impact