The mechanical behaviour of steel-to-timber joints with annular-ringed shank nails is investigated using numerical modelling and a component approach. These joints are used in Cross-Laminated Timber (CLT) buildings to anchor metal connectors such as hold-downs and angle brackets to the timber panels. At first, a general hysteresis model is introduced, where a single fastener joint is schematized as an elasto-plastic beam embedded in a non-linear medium with a compression-only behaviour. A second hysteresis model is then presented, where the mechanical behaviour of the joint is simulated by a non-linear spring with three degrees of freedom. Both models are calibrated on the design rules prescribed by the reference standards. Moreover, average strength capacities are determined from the corresponding characteristic values assuming a standard normal distribution and suitable coefficients of variation. As first applicative examples of the proposed models, shear tests are simulated on single steel-to-timber joints with annular-ringed shank nails and on a connection made of an angle bracket and sixty nails. The scatter of mechanical properties in steel-to-timber joints is also taken into account in the simulations and a stochastic approach is proposed, demonstrating acceptable accuracy.
Numerical modelling of steel-to-timber joints and connectors for CLT structures
Izzi M;Polastri A
2016
Abstract
The mechanical behaviour of steel-to-timber joints with annular-ringed shank nails is investigated using numerical modelling and a component approach. These joints are used in Cross-Laminated Timber (CLT) buildings to anchor metal connectors such as hold-downs and angle brackets to the timber panels. At first, a general hysteresis model is introduced, where a single fastener joint is schematized as an elasto-plastic beam embedded in a non-linear medium with a compression-only behaviour. A second hysteresis model is then presented, where the mechanical behaviour of the joint is simulated by a non-linear spring with three degrees of freedom. Both models are calibrated on the design rules prescribed by the reference standards. Moreover, average strength capacities are determined from the corresponding characteristic values assuming a standard normal distribution and suitable coefficients of variation. As first applicative examples of the proposed models, shear tests are simulated on single steel-to-timber joints with annular-ringed shank nails and on a connection made of an angle bracket and sixty nails. The scatter of mechanical properties in steel-to-timber joints is also taken into account in the simulations and a stochastic approach is proposed, demonstrating acceptable accuracy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.