The effect of gadolinium-doped ceria (GDC) interlayer on the Pr0.8Sr0.2Fe0.7Ni0.3O3-? (PSFN8273) cathode performance and stability in solid oxide fuel cell (SOFC) operating conditions is investigated. Two different symmetrical half-cells, with dense GDC electrolyte pellet (GDC/PSFN cell) and with GDC interlayer deposited on yttria stabilized zirconia pellet (YSZ) (YSZ/GDC/PSFN cell), are prepared and characterized by electrochemical impedance spectroscopy (EIS) as a function of temperature. The fitting of the data is carried out using an adapted Equivalent Circuit (EC). The polarization resistance (Rp) is higher for the YSZ/GDC/PSFN cell compared to GDC/PSFN cell. This increase is assigned to the interface microstructure. Then, the electrochemical properties of the half-cell with GDC interlayer are measured in three-electrode configuration under dc cathodic overpotential. In addition, the long-term stability is evaluated through an ageing test applying a current density of -123 mA.cm-2 for 1000 hours at 700 °C under air. PSFN8273 appears to be stable as cathode with a decrease in overpotential of about 6% in the first 200 hours and a subsequently stabilization. These results mean that even if the GDC interlayer affect the cathode performance (in terms of Rp) it did not influence its stability, making PSFN8273 a suitable material as cathode for SOFC application.

Influence of the electrode/electrolyte interface structure on the performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-? as Solid Oxide Fuel Cell cathode

Carpanese MP;
2017

Abstract

The effect of gadolinium-doped ceria (GDC) interlayer on the Pr0.8Sr0.2Fe0.7Ni0.3O3-? (PSFN8273) cathode performance and stability in solid oxide fuel cell (SOFC) operating conditions is investigated. Two different symmetrical half-cells, with dense GDC electrolyte pellet (GDC/PSFN cell) and with GDC interlayer deposited on yttria stabilized zirconia pellet (YSZ) (YSZ/GDC/PSFN cell), are prepared and characterized by electrochemical impedance spectroscopy (EIS) as a function of temperature. The fitting of the data is carried out using an adapted Equivalent Circuit (EC). The polarization resistance (Rp) is higher for the YSZ/GDC/PSFN cell compared to GDC/PSFN cell. This increase is assigned to the interface microstructure. Then, the electrochemical properties of the half-cell with GDC interlayer are measured in three-electrode configuration under dc cathodic overpotential. In addition, the long-term stability is evaluated through an ageing test applying a current density of -123 mA.cm-2 for 1000 hours at 700 °C under air. PSFN8273 appears to be stable as cathode with a decrease in overpotential of about 6% in the first 200 hours and a subsequently stabilization. These results mean that even if the GDC interlayer affect the cathode performance (in terms of Rp) it did not influence its stability, making PSFN8273 a suitable material as cathode for SOFC application.
2017
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
cathodic polarization resistance
ceria doped buffer layer
electrochemical properties
praseodymium strontium ferro-nickelate perovskite
SOFC cathode
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact