In this communication we describe ChromStruct4, a method to reconstruct a set of plausible chromatin configurations starting from contact data obtained through Chromosome Conformation Capture techniques. Chromating fibre is modeled as a kinematic chain made of consecutive and partially penetrable beads whose properties (bead size, elasticity, curvature, etc.) can be suitably constrained. The chain can be divided in segments corresonding to Topological Association Domains. We do not search for a unique consensus configuration, because the experimental data are not derived from a single cell, but from millions of cells. We use a coarse-grained recoursive approach, based on a Simulated Annealing algorithm in order to sample the solution space. As opposed to most popular methods, we do not translate contact frequencies deterministically into distances, since this often produces structures that are not consistent with the Euclidean geometry, but adopt the assumption that loci with very high contact frequencies are actually close, but loci with low contact frequencies are not necessarily far away. ChromStruct4 is tested against real Hi-C data and compared with other methods for the 3-dimesional reconstruction fo Chromatin structure starting from Chromosome Conformation Capture data.

3D Chromatin structure estimation from chromosome conformation capture data

Caudai C;Salerno E;Zoppè M;Tonazzini A
2017

Abstract

In this communication we describe ChromStruct4, a method to reconstruct a set of plausible chromatin configurations starting from contact data obtained through Chromosome Conformation Capture techniques. Chromating fibre is modeled as a kinematic chain made of consecutive and partially penetrable beads whose properties (bead size, elasticity, curvature, etc.) can be suitably constrained. The chain can be divided in segments corresonding to Topological Association Domains. We do not search for a unique consensus configuration, because the experimental data are not derived from a single cell, but from millions of cells. We use a coarse-grained recoursive approach, based on a Simulated Annealing algorithm in order to sample the solution space. As opposed to most popular methods, we do not translate contact frequencies deterministically into distances, since this often produces structures that are not consistent with the Euclidean geometry, but adopt the assumption that loci with very high contact frequencies are actually close, but loci with low contact frequencies are not necessarily far away. ChromStruct4 is tested against real Hi-C data and compared with other methods for the 3-dimesional reconstruction fo Chromatin structure starting from Chromosome Conformation Capture data.
2017
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Chromatin
3D modeling
Chromosome Conformation
Capture
File in questo prodotto:
File Dimensione Formato  
prod_374320-doc_125538.pdf

accesso aperto

Descrizione: 3D Chromatin structure estimation from chromosome conformation capture data
Tipologia: Versione Editoriale (PDF)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact