In the last years renewed investigation of operator precedence languages (OPL) led to discover important properties thereof: OPL are closed with respect to all major operations, are character- ized, besides the original grammar family, in terms of an automata family (OPA) and an MSO logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL). In another area of research, quantitative models of systems are also greatly in demand. In this paper, we lay the foundation to marry these two research fields. We introduce weighted operator precedence automata and show how they are both strict extensions of OPA and weighted visibly pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be described by unweighted OPA and very particular weighted OPA. In a Büchi-like theorem, we show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL.
Weighted Operator Precedence Languages
Matteo Pradella
2017
Abstract
In the last years renewed investigation of operator precedence languages (OPL) led to discover important properties thereof: OPL are closed with respect to all major operations, are character- ized, besides the original grammar family, in terms of an automata family (OPA) and an MSO logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL). In another area of research, quantitative models of systems are also greatly in demand. In this paper, we lay the foundation to marry these two research fields. We introduce weighted operator precedence automata and show how they are both strict extensions of OPA and weighted visibly pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be described by unweighted OPA and very particular weighted OPA. In a Büchi-like theorem, we show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.