In this paper, we propose a new class of iteratively re-weighted least squares (IRLS) for sparse recovery problems. The proposed methods are inspired by constrained maximum-likelihood estimation under a Gaussian scale mixture (GSM) distribution assumption. In the noise-free setting, we provide sufficient conditions ensuring the convergence of the sequences generated by these algorithms to the set of fixed points of the maps that rule their dynamics and derive conditions verifiable a posteriori for the convergence to a sparse solution. We further prove that these algorithms are quadratically fast in a neighborhood of a sparse solution. We show through numerical experiments that the proposed methods outperform classical IRLS for l(tau)-minimization with tau is an element of (0,1] in terms of speed and of sparsity-undersampling tradeoff and are robust even in presence of noise. The simplicity and the theoretical guarantees provided in this paper make this class of algorithms an attractive solution for sparse recovery problems.

Gaussian Mixtures Based IRLS for Sparse Recovery With Quadratic Convergence

Ravazzi Chiara;
2015

Abstract

In this paper, we propose a new class of iteratively re-weighted least squares (IRLS) for sparse recovery problems. The proposed methods are inspired by constrained maximum-likelihood estimation under a Gaussian scale mixture (GSM) distribution assumption. In the noise-free setting, we provide sufficient conditions ensuring the convergence of the sequences generated by these algorithms to the set of fixed points of the maps that rule their dynamics and derive conditions verifiable a posteriori for the convergence to a sparse solution. We further prove that these algorithms are quadratically fast in a neighborhood of a sparse solution. We show through numerical experiments that the proposed methods outperform classical IRLS for l(tau)-minimization with tau is an element of (0,1] in terms of speed and of sparsity-undersampling tradeoff and are robust even in presence of noise. The simplicity and the theoretical guarantees provided in this paper make this class of algorithms an attractive solution for sparse recovery problems.
2015
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Compressed sensing
constrained maximum likelihood estimation
Gaussian scale mixtures
iterative support detection and estimation
iteratively re-weighted least squares methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact