A new synchrotron radiation photoelectron spectral (PES) study of iodopentafluorobenzene, together with a theoretical analysis of the spectrum, where Franck-Condon factors are discussed, gives detailed insight into the ionization processes, and this exposes the need for a reinvestigation of the vacuum ultraviolet spectral (VUV) assignments.We have calculated adiabatic ionization energies (AIEs) for several ionic states, using the equation-of-motion coupled cluster method for ionic states combined with multi-configuration self-consistent field calculation study. The AIE sequence is:X2B1 < A2A2 < B2B2 < C22B1 < D2A1 < E32B1. This symmetry sequence has a major impact on previous VUV spectral assignments, which now appear to be to optically forbidden states. Changes in the equilibrium structures for these ionic states are relatively small, but a significant decrease and increase in the C-I bond length relative to the X1A1 structure occurs for the X2B1 and C2B1 states, respectively. The PES shows major vibrational overlaps between pairs of ionic states, X with A, and A with B. The result of these overlaps is the loss of vibrational structure and considerable broadening of the higher energy PES state. Although the baseline is nearly re-established between the A and B states, where the two bands are nearly separate, the B state is also broadened by the A state. Only the C ionic state, which shows the most highly developed vibrational structure, can be regarded as free from vibrational coupling to a neighbor state. The Franck-Condon analysis of the PES bands X, A, B, and C is described in detail; the apparent simplicity of some of these bands is illusory, since almost all the observed peaks arise from super-position of several calculated vibrational states. The experimental AIE of the A state, which is submerged under the X state envelope, has been determined by the subtraction of the calculated X state envelope from the observed PES spectrum. The overlap of these PES bands and the apparent closeness of the potential energy curves describing them have been investigated, using the state-averaged, complete active space self-consistent field method. We have identified two structures, one where the potential energy curves for the X and A states cross and another for the A and B states. At these two conical intersections (ConInts), there is zero-energy difference within each pair of states. Although similar in energy, the ConInt for the crossing of the X with A states, and that for the A with B states, shows that the open-shell occupancies correspond to the 4 lowest AIE states, and all four states that are quite different from each other.

A combined theoretical and experimental study of the ionic states of iodopentafluorobenzene

Marcello Coreno;Monica de Simone;Cesare Grazioli;
2017

Abstract

A new synchrotron radiation photoelectron spectral (PES) study of iodopentafluorobenzene, together with a theoretical analysis of the spectrum, where Franck-Condon factors are discussed, gives detailed insight into the ionization processes, and this exposes the need for a reinvestigation of the vacuum ultraviolet spectral (VUV) assignments.We have calculated adiabatic ionization energies (AIEs) for several ionic states, using the equation-of-motion coupled cluster method for ionic states combined with multi-configuration self-consistent field calculation study. The AIE sequence is:X2B1 < A2A2 < B2B2 < C22B1 < D2A1 < E32B1. This symmetry sequence has a major impact on previous VUV spectral assignments, which now appear to be to optically forbidden states. Changes in the equilibrium structures for these ionic states are relatively small, but a significant decrease and increase in the C-I bond length relative to the X1A1 structure occurs for the X2B1 and C2B1 states, respectively. The PES shows major vibrational overlaps between pairs of ionic states, X with A, and A with B. The result of these overlaps is the loss of vibrational structure and considerable broadening of the higher energy PES state. Although the baseline is nearly re-established between the A and B states, where the two bands are nearly separate, the B state is also broadened by the A state. Only the C ionic state, which shows the most highly developed vibrational structure, can be regarded as free from vibrational coupling to a neighbor state. The Franck-Condon analysis of the PES bands X, A, B, and C is described in detail; the apparent simplicity of some of these bands is illusory, since almost all the observed peaks arise from super-position of several calculated vibrational states. The experimental AIE of the A state, which is submerged under the X state envelope, has been determined by the subtraction of the calculated X state envelope from the observed PES spectrum. The overlap of these PES bands and the apparent closeness of the potential energy curves describing them have been investigated, using the state-averaged, complete active space self-consistent field method. We have identified two structures, one where the potential energy curves for the X and A states cross and another for the A and B states. At these two conical intersections (ConInts), there is zero-energy difference within each pair of states. Although similar in energy, the ConInt for the crossing of the X with A states, and that for the A with B states, shows that the open-shell occupancies correspond to the 4 lowest AIE states, and all four states that are quite different from each other.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
iodofluorbenzene
PES
VUV
Multi-configurational self-consistent field
Coupled-cluster methods
Complete-active space self-consistent field
Potential energy surfaces
Vibrational states
Franck Condon principle
Franck Condon factors
Ions and properties
Vacuum ultraviolet radiation
Gas phase
File in questo prodotto:
File Dimensione Formato  
prod_374403-doc_125634.pdf

Open Access dal 23/02/2018

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri
JCP_17_C6F5I_Palmer_SM.pdf

Open Access dal 23/02/2018

Descrizione: supplementary material
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 561.02 kB
Formato Adobe PDF
561.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact