In this paper, we deal with the localization problem in wireless sensor networks, where a target sensor location must be estimated starting from few measurements of the power present in a radio signal received from sensors with known locations. Inspired by the recent advances in sparse approximation, the localization problem is recast as a block-sparse signal recovery problem in the discrete spatial domain. In this paper, we develop different RSS-fingerprinting localization algorithms and propose a dictionary optimization based on the notion of the coherence to improve the reconstruction efficiency. The proposed protocols are then compared with traditional fingerprinting methods both via simulation and on-field experiments. The results prove that our methods outperform the existing ones in terms of the achieved localization accuracy.

Block-sparsity-based localization in wireless sensor networks

Ravazzi Chiara;
2015

Abstract

In this paper, we deal with the localization problem in wireless sensor networks, where a target sensor location must be estimated starting from few measurements of the power present in a radio signal received from sensors with known locations. Inspired by the recent advances in sparse approximation, the localization problem is recast as a block-sparse signal recovery problem in the discrete spatial domain. In this paper, we develop different RSS-fingerprinting localization algorithms and propose a dictionary optimization based on the notion of the coherence to improve the reconstruction efficiency. The proposed protocols are then compared with traditional fingerprinting methods both via simulation and on-field experiments. The results prove that our methods outperform the existing ones in terms of the achieved localization accuracy.
2015
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Block-sparsity
Localization
Real data experimentation/testbed
RSS-fingerprinting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact