The present work describes the preparation of polypropylene composites reinforced with cotton fibers, which were obtained from textile waste. The cellulosic fibers were bleached and then chemically modified on the surface using acetylation or silanization methods. Fourier transform infrared spectroscopy analysis and energy dispersive X-ray spectroscopy confirmed the efficiency of both treatments. Results of thermal degradation by thermogravimetric analysis (TGA) of treated fibers indicated that the acetylated ones decreased thermal stability while the silanized fibers increased this property. The influence of the chemical modifications and fibers content in polypropylene-based composites was studied by thermomechanical and mechanical properties (dynamic mechanical analysis and tensile tests) and thermal analyses (TGA and differential scanning calorimetry). The results showed that the addition of the obtained cellulose fibers in polypropylene caused increase of storage and Young's moduli, along with stress at break. Moreover, scanning electronic microscopy micrographs of cryofractured surfaces revealed stronger adhesion between fiber and matrix in the composites reinforced with the modified fibers. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45060.

Polypropylene-based composites reinforced with textile wastes

Russo Pietro;Errico Maria Emanuela;Avolio Roberto;Avella Maurizio;Gentile Gennaro
2017

Abstract

The present work describes the preparation of polypropylene composites reinforced with cotton fibers, which were obtained from textile waste. The cellulosic fibers were bleached and then chemically modified on the surface using acetylation or silanization methods. Fourier transform infrared spectroscopy analysis and energy dispersive X-ray spectroscopy confirmed the efficiency of both treatments. Results of thermal degradation by thermogravimetric analysis (TGA) of treated fibers indicated that the acetylated ones decreased thermal stability while the silanized fibers increased this property. The influence of the chemical modifications and fibers content in polypropylene-based composites was studied by thermomechanical and mechanical properties (dynamic mechanical analysis and tensile tests) and thermal analyses (TGA and differential scanning calorimetry). The results showed that the addition of the obtained cellulose fibers in polypropylene caused increase of storage and Young's moduli, along with stress at break. Moreover, scanning electronic microscopy micrographs of cryofractured surfaces revealed stronger adhesion between fiber and matrix in the composites reinforced with the modified fibers. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45060.
2017
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
biodegradable
cellulose and other wood products
polyolefins
thermoplastics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/337962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact