Helichrysum umbraculigerum Less. has been reported to be a prolific producer of phytocannabinoids from the alkyl-, aralkyl-, normal-, and abnormal types. Investigation of an acetone extract from the aerial parts of the plant afforded two novel amorfrutin-type phytocannabinoids (3b, 4) and the new geranylated phloroglucinol 5a. The presence of cannabigerol (CBG, 1a) and its acidic precursor (pre-CBG, CBGA, 1b), previously reported from this plant, could not be confirmed, but the phenethyl analogue of CBG (Heli-CBG, 2a) and the methyl ester of its carboxylated version (2b) were isolated. Heli-CBG (2a) was assayed against a series of metabotropic (CB1 and CB2)- and ionotropic (thermo-TRPs) targets of phytocannabinoids, comparing its profile with the one of cannabigerol (CBG). A decreased affinity for cannabinoid receptor was observed, along with substantial retention of the thermo-TRP profile. The biogenetic relationships between the isoprenylated phenolics from H. umbraculigerum are discussed, highlighting the relevance of this species for biogenetic investigations on phytocannabinoids
Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum.
De Petrocellis L;
2017
Abstract
Helichrysum umbraculigerum Less. has been reported to be a prolific producer of phytocannabinoids from the alkyl-, aralkyl-, normal-, and abnormal types. Investigation of an acetone extract from the aerial parts of the plant afforded two novel amorfrutin-type phytocannabinoids (3b, 4) and the new geranylated phloroglucinol 5a. The presence of cannabigerol (CBG, 1a) and its acidic precursor (pre-CBG, CBGA, 1b), previously reported from this plant, could not be confirmed, but the phenethyl analogue of CBG (Heli-CBG, 2a) and the methyl ester of its carboxylated version (2b) were isolated. Heli-CBG (2a) was assayed against a series of metabotropic (CB1 and CB2)- and ionotropic (thermo-TRPs) targets of phytocannabinoids, comparing its profile with the one of cannabigerol (CBG). A decreased affinity for cannabinoid receptor was observed, along with substantial retention of the thermo-TRP profile. The biogenetic relationships between the isoprenylated phenolics from H. umbraculigerum are discussed, highlighting the relevance of this species for biogenetic investigations on phytocannabinoidsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.