This paper presents a design study of a new topology for miniaturized bondwire transformers fabricated and assembled with standard IC bonding wires and toroidal ferrite (Fair-Rite 5975000801) as a magnetic core. The microtransformer realized on a PCB substrate, enables the build of magnetics on-top-of-chip, thus leading to the design of high power density components. Impedance measurements in a frequency range between 100 kHz to 5 MHz, show that the secondary self-inductance is enhanced from 0.3 ?H with an epoxy core to 315 ?H with the ferrite core. Moreover, the micromachined ferrite improves the coupling coefficient from 0.1 to 0.9 and increases the effective turns ratio from 0.5 to 35. Finally, a low-voltage IC DC-DC converter solution, with the transformer mounted on-top, is proposed for energy harvesting applications.
Design and Fabrication of a 315 ?H Bondwire Micro-Transformer for Ultra-Low Voltage Energy Harvesting
Rudi Paolo Paganelli;
2014
Abstract
This paper presents a design study of a new topology for miniaturized bondwire transformers fabricated and assembled with standard IC bonding wires and toroidal ferrite (Fair-Rite 5975000801) as a magnetic core. The microtransformer realized on a PCB substrate, enables the build of magnetics on-top-of-chip, thus leading to the design of high power density components. Impedance measurements in a frequency range between 100 kHz to 5 MHz, show that the secondary self-inductance is enhanced from 0.3 ?H with an epoxy core to 315 ?H with the ferrite core. Moreover, the micromachined ferrite improves the coupling coefficient from 0.1 to 0.9 and increases the effective turns ratio from 0.5 to 35. Finally, a low-voltage IC DC-DC converter solution, with the transformer mounted on-top, is proposed for energy harvesting applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.