Embeddings provide compact representations of signals to be used to perform inference in a wide variety of tasks. Random projections have been extensively used to preserve Euclidean distances or inner products of high dimensional signals into low dimensional representations. Different techniques based on hashing have been used in the past to embed set similarity metrics such as the Jaccard coefficient. In this paper we show that a class of random projections based on sparse matrices can be used to preserve the Jaccard coefficient between the supports of sparse signals. Our proposed construction can be therefore used in a variety of tasks in machine learning and multimedia signal processing where the overlap between signal supports is a relevant similarity metric. We also present an application in retrieval of similar text documents where SparseHash improves over MinHash.

SparseHash: Embedding Jaccard coefficient between supports of signals

Ravazzi C;
2016

Abstract

Embeddings provide compact representations of signals to be used to perform inference in a wide variety of tasks. Random projections have been extensively used to preserve Euclidean distances or inner products of high dimensional signals into low dimensional representations. Different techniques based on hashing have been used in the past to embed set similarity metrics such as the Jaccard coefficient. In this paper we show that a class of random projections based on sparse matrices can be used to preserve the Jaccard coefficient between the supports of sparse signals. Our proposed construction can be therefore used in a variety of tasks in machine learning and multimedia signal processing where the overlap between signal supports is a relevant similarity metric. We also present an application in retrieval of similar text documents where SparseHash improves over MinHash.
2016
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Embedding
Jaccard coefficient
random projections
sparse matrices
MinHash
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact