In this paper, we propose a method for estimating the sparsity of a signal from its noisy linear projections without recovering it. The method exploits the property that linear projections acquired using a sparse sensing matrix are distributed according to a mixture distribution whose parameters depend on the signal sparsity. Due to the complexity of the exact mixture model, we introduce an approximate two-component Gaussian mixture model whose parameters can be estimated via expectation-maximization techniques. We demonstrate that the above model is accurate in the large system limit for a proper choice of the sensing matrix sparsifying parameter. Moreover, experimental results demonstrate that the method is robust under different signal-to-noise ratios and outperforms existing sparsity estimation techniques.

SIGNAL SPARSITY ESTIMATION FROM COMPRESSIVE NOISY PROJECTIONS VIA gamma-SPARSIFIED RANDOM MATRICES

Ravazzi C;
2016

Abstract

In this paper, we propose a method for estimating the sparsity of a signal from its noisy linear projections without recovering it. The method exploits the property that linear projections acquired using a sparse sensing matrix are distributed according to a mixture distribution whose parameters depend on the signal sparsity. Due to the complexity of the exact mixture model, we introduce an approximate two-component Gaussian mixture model whose parameters can be estimated via expectation-maximization techniques. We demonstrate that the above model is accurate in the large system limit for a proper choice of the sensing matrix sparsifying parameter. Moreover, experimental results demonstrate that the method is robust under different signal-to-noise ratios and outperforms existing sparsity estimation techniques.
2016
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Compressed sensing
Gaussian mixture models
sparse matr
sparsity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact