Characteristics of soil organic matter (SOM) are important, especially in the Amazon region, which represents one of the world's most relevant carbon reservoirs. In this work, the concentrations of carbon and differences in its composition (humification indexes) were evaluated and compared for several horizons (0 to 390 cm) of three typical Amazonian podzol profiles. Fluorescence spectroscopy was used to investigate the humic acid (HA) fractions of SOM isolated from the different samples. Simple and labile carbon structures appeared to be accumulated in surface horizons, while more complex humified compounds were leached and accumulated in intermediate and deeper Bh horizons. The results suggested that the humic acids originated from lignin and its derivatives, and that lignin could accumulate in some Bh horizons. The HA present in deeper Bh horizons appeared to originate from different formation pathways, since these horizons showed different compositions. There were significant compositional changes of HA with depth, with four types of organic matter: recalcitrant, humified, and old dating; labile and young dating; humified and young dating; and little humified and old dating. Therefore, the humification process had no direct relation with the age of the organic matter in the Amazonian podzols.
Soil organic matter in podzol horizons of the Amazon region: Humification, recalcitrance, and dating
Senesi GS;
2018
Abstract
Characteristics of soil organic matter (SOM) are important, especially in the Amazon region, which represents one of the world's most relevant carbon reservoirs. In this work, the concentrations of carbon and differences in its composition (humification indexes) were evaluated and compared for several horizons (0 to 390 cm) of three typical Amazonian podzol profiles. Fluorescence spectroscopy was used to investigate the humic acid (HA) fractions of SOM isolated from the different samples. Simple and labile carbon structures appeared to be accumulated in surface horizons, while more complex humified compounds were leached and accumulated in intermediate and deeper Bh horizons. The results suggested that the humic acids originated from lignin and its derivatives, and that lignin could accumulate in some Bh horizons. The HA present in deeper Bh horizons appeared to originate from different formation pathways, since these horizons showed different compositions. There were significant compositional changes of HA with depth, with four types of organic matter: recalcitrant, humified, and old dating; labile and young dating; humified and young dating; and little humified and old dating. Therefore, the humification process had no direct relation with the age of the organic matter in the Amazonian podzols.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.