Hybrid nanomaterial based on the combination between a 2D silicate structure of a smectic clay (SWy) and 1D structures of carbon nanotubes has been synthesized and used as additive in the polymer matrix of Nafion for the preparation of electrolyte nanocomposite membranes. The CNTs anchored on the clay's lamellae were subsequently oxidized and organo-functionalized by sulphonic groups. The hybrid membranes have been tested in direct methanol fuel cells (DMFCs) and studied by NMR spectroscopy (pulse field gradient technique and relaxation times), electrochemical impedance spectroscopy and SEM microscopy. The study of the molecular dynamics of methanol and protons, as well as the tests in the DMFC, shows the effectiveness of these "branched particles" for the reduction of the methanol crossover, whilst ensuring appropriate proton conductivity, especially in conditions of low humidity and high temperature (>100 °C).

Reduced methanol crossover and enhanced proton transport in nanocomposite membranes based on clay-CNTs hybrid materials for direct methanol fuel cells

Baglio V;Lo Vecchio C;
2017

Abstract

Hybrid nanomaterial based on the combination between a 2D silicate structure of a smectic clay (SWy) and 1D structures of carbon nanotubes has been synthesized and used as additive in the polymer matrix of Nafion for the preparation of electrolyte nanocomposite membranes. The CNTs anchored on the clay's lamellae were subsequently oxidized and organo-functionalized by sulphonic groups. The hybrid membranes have been tested in direct methanol fuel cells (DMFCs) and studied by NMR spectroscopy (pulse field gradient technique and relaxation times), electrochemical impedance spectroscopy and SEM microscopy. The study of the molecular dynamics of methanol and protons, as well as the tests in the DMFC, shows the effectiveness of these "branched particles" for the reduction of the methanol crossover, whilst ensuring appropriate proton conductivity, especially in conditions of low humidity and high temperature (>100 °C).
2017
Istituto di Tecnologie Avanzate per l'Energia - ITAE
PFG-NMR
DMFC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact