A new ternary polymer electrolyte based on thermally cross-linked poly(urethane acrylate) (PUA), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-butyl-N-methylpyrrolidinium TFSI (PYR14TFSI) was developed and tested for application in LMP batteries. The polymer electrolyte was a transparent yellow self-standing material with quite good mechanical properties, i.e., comparable to that of a flexible rubber. The room temperature ionic conductivity of the dry polymer electrolyte was found to be as high as 0.1 mS cm(-1) for the compound containing 40 wt% of ionic liquid (PYR14TFSI) and a O/Li ratio of 15/1 (Li+ from LiTFSI). The thermal analysis of the new cross-linked electrolyte showed that it was homogeneous, amorphous and stable over a wide temperature range extending from -40 degrees C to 100 degrees C. The homogeneity of the polymer electrolyte was also confirmed by SEM analysis. (c) 2008 Elsevier Ltd. All rights reserved.

A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane acrylate) in presence of a lithium salt and an ionic liquid

D Zane;
2008

Abstract

A new ternary polymer electrolyte based on thermally cross-linked poly(urethane acrylate) (PUA), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-butyl-N-methylpyrrolidinium TFSI (PYR14TFSI) was developed and tested for application in LMP batteries. The polymer electrolyte was a transparent yellow self-standing material with quite good mechanical properties, i.e., comparable to that of a flexible rubber. The room temperature ionic conductivity of the dry polymer electrolyte was found to be as high as 0.1 mS cm(-1) for the compound containing 40 wt% of ionic liquid (PYR14TFSI) and a O/Li ratio of 15/1 (Li+ from LiTFSI). The thermal analysis of the new cross-linked electrolyte showed that it was homogeneous, amorphous and stable over a wide temperature range extending from -40 degrees C to 100 degrees C. The homogeneity of the polymer electrolyte was also confirmed by SEM analysis. (c) 2008 Elsevier Ltd. All rights reserved.
2008
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 31
social impact