The Voronoi diagrams are an important tool having theoretical and practical applications in a large number of fields. We present a new procedure, implemented as a set of CUDA kernels, which detects, in a general and efficient way, topological changes in case of dynamic Voronoi diagrams whose generating points move in time. The solution that we provide has been originally developed to identify plastic events during simulations of soft-glassy materials based on a lattice Boltzmann model with frustrated-short range attractive and mid/long-range repulsive-interactions. Along with the description of our approach, we present also some preliminary physics results.

GPU based detection of topological changes in Voronoi diagrams

Bernaschi M;
2017

Abstract

The Voronoi diagrams are an important tool having theoretical and practical applications in a large number of fields. We present a new procedure, implemented as a set of CUDA kernels, which detects, in a general and efficient way, topological changes in case of dynamic Voronoi diagrams whose generating points move in time. The solution that we provide has been originally developed to identify plastic events during simulations of soft-glassy materials based on a lattice Boltzmann model with frustrated-short range attractive and mid/long-range repulsive-interactions. Along with the description of our approach, we present also some preliminary physics results.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Delaunay
Emulsions
GPU
Lattice Boltzmann
Plastic Event
Topology Change
Voronoi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact