We use a "structure director" colloidal composite to fabricate porous titanium oxide films having a hierarchical pore architecture consisting of mesopores regularly distributed in the macropore shell. The colloidal composite consists of polystyrene beads coated with (ammonium lactate)titanium dihydroxide deposited by means of a fluidic technique. The pore properties and interconnections are controlled at different length scales: a macroscale, which is imposed by the polystyrene beads; a mesoscale, which is controlled by the composition and by the thermal history of the composite; a nanometer-scale, controlled by the nanocrystal sintering in air. Our approach can be extended to a wide class of water-soluble metal oxide precursors; therefore, it opens interesting perspectives for "bottom-up" nanotechnology of functional arrays and devices.

3D hierarchical porous TiO2 films from colloidal composite fluidic deposition

G Ruani;M Cavallini;F Biscarini
2008-01-01

Abstract

We use a "structure director" colloidal composite to fabricate porous titanium oxide films having a hierarchical pore architecture consisting of mesopores regularly distributed in the macropore shell. The colloidal composite consists of polystyrene beads coated with (ammonium lactate)titanium dihydroxide deposited by means of a fluidic technique. The pore properties and interconnections are controlled at different length scales: a macroscale, which is imposed by the polystyrene beads; a mesoscale, which is controlled by the composition and by the thermal history of the composite; a nanometer-scale, controlled by the nanocrystal sintering in air. Our approach can be extended to a wide class of water-soluble metal oxide precursors; therefore, it opens interesting perspectives for "bottom-up" nanotechnology of functional arrays and devices.
2008
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact