In this paper we investigate the sensitivity of the LWR model on network to its parameters and to the network itself. The quantification of sensitivity is obtained by measuring the Wasserstein distance between two LWR solutions corresponding to different inputs. To this end, we propose a numerical method to approximate the Wasserstein distance between two density distributions defined on a network. We found a large sensitivity to the traffic distribution at junctions, the network size, and the network topology.

Sensitivity analysis of the LWR model for traffic forecast on large networks using Wasserstein distance

Maya Briani;Emiliano Cristiani;
2018

Abstract

In this paper we investigate the sensitivity of the LWR model on network to its parameters and to the network itself. The quantification of sensitivity is obtained by measuring the Wasserstein distance between two LWR solutions corresponding to different inputs. To this end, we propose a numerical method to approximate the Wasserstein distance between two density distributions defined on a network. We found a large sensitivity to the traffic distribution at junctions, the network size, and the network topology.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Traffic models
LWR model
Wasserstein distance
uncertainty quantification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact