An important process underlying meditation and its benefits involves the regulation of attention. Although the two main meditation categories - open-monitoring meditation (OMM) and focused-attention meditation (FAM) - are associated with different benefits and attentional processes, direct comparisons between the attentional neural mechanism of FAM and OMM are rare. This study uses magnetoencephalography (MEG) recordings in 12 expert meditators to compare FAM and OMM by assessing (i) source spectral power, (ii) seed-based functional connectivity of key regions in attention, (including anterior cingulate cortex, dorsolateral prefrontal cortex and the thalamus) and (iii) graph theory metrics that describe brain-wide efficiency of information processing. We reconstructed the source space using minimum norm estimate and computed spectral power and functional connectivity in multiple frequency bands (delta, theta, alpha, beta, gamma) using a custom-designed python-based MEG analysis pipeline (NeuroPycon). The results reveal unique patterns of neural processes specific to FAM or OMM. Among other things, compared to FAM, OMM appears to be characterized by enhanced small-world network properties. By contrast, FAM exhibits greater functional connectivity between the anterior cingulate cortex and frontal regions. These findings shed light onto the mechanisms that potentially mediate the different behavioral and attentional capacities associated with each of the two meditation techniques. Our results are discussed in the context of previous behavioral and fMRI studies on meditation and attention.

Large-scale brain integration patterns differ in focused-attention and open-monitoring meditation

Annalisa Pascarella;
2017

Abstract

An important process underlying meditation and its benefits involves the regulation of attention. Although the two main meditation categories - open-monitoring meditation (OMM) and focused-attention meditation (FAM) - are associated with different benefits and attentional processes, direct comparisons between the attentional neural mechanism of FAM and OMM are rare. This study uses magnetoencephalography (MEG) recordings in 12 expert meditators to compare FAM and OMM by assessing (i) source spectral power, (ii) seed-based functional connectivity of key regions in attention, (including anterior cingulate cortex, dorsolateral prefrontal cortex and the thalamus) and (iii) graph theory metrics that describe brain-wide efficiency of information processing. We reconstructed the source space using minimum norm estimate and computed spectral power and functional connectivity in multiple frequency bands (delta, theta, alpha, beta, gamma) using a custom-designed python-based MEG analysis pipeline (NeuroPycon). The results reveal unique patterns of neural processes specific to FAM or OMM. Among other things, compared to FAM, OMM appears to be characterized by enhanced small-world network properties. By contrast, FAM exhibits greater functional connectivity between the anterior cingulate cortex and frontal regions. These findings shed light onto the mechanisms that potentially mediate the different behavioral and attentional capacities associated with each of the two meditation techniques. Our results are discussed in the context of previous behavioral and fMRI studies on meditation and attention.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
MEG
meditation
connecitivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact