Ullmann coupling is the most common approach to form surface-confined one-and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.

The role of halogens in on-surface Ullmann polymerization

Di Giovannantonio Marco;Verdini Alberto;Floreano Luca;Contini Giorgio
2017

Abstract

Ullmann coupling is the most common approach to form surface-confined one-and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
ullmann
polymer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/338945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? ND
social impact