Antibacterial items are one of the major queries from the medical community in the fight against medical infections. Indeed, bacteria are resistant and their multiplication and biofilm formation on devises are one of the major causes of infections. Finding antibacterial surfaces, which are biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces, is not easy. However, we created an antibacterial cloak by laser printing of Graphene Oxide (GO) hydrogels by mimicking the Cancer Pagurus carapace. This surface provides up to 90% reduction of bacteria cells through a bacteriostatic and bactericidal effect. Indeed, Laser treating allows GO sheets gel to cut and wrap microorganisms. Our findings are confirmed by a theoretical active matter model. This new technology based on antibiotic-free biomimetic Graphene Oxide gels opens untrodden roads to the fight against infections in biomedical applications and chirurgical equipment.
Nonlinear optics, optomechanics, and antibacterial coating by graphene oxide
Ciancico C;Braidotti MC;Gentilini S;Ghofraniha N;Angelani L;Palmieri V;Papi M;Conti C
2017
Abstract
Antibacterial items are one of the major queries from the medical community in the fight against medical infections. Indeed, bacteria are resistant and their multiplication and biofilm formation on devises are one of the major causes of infections. Finding antibacterial surfaces, which are biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces, is not easy. However, we created an antibacterial cloak by laser printing of Graphene Oxide (GO) hydrogels by mimicking the Cancer Pagurus carapace. This surface provides up to 90% reduction of bacteria cells through a bacteriostatic and bactericidal effect. Indeed, Laser treating allows GO sheets gel to cut and wrap microorganisms. Our findings are confirmed by a theoretical active matter model. This new technology based on antibiotic-free biomimetic Graphene Oxide gels opens untrodden roads to the fight against infections in biomedical applications and chirurgical equipment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.