Semantic search has a great potentiality in helping users to make choices, since it appears to outperform traditional keyword-based approaches. This paper presents an ontology-based semantic search method, referred to as influential SemSim (i-SemSim), which relies on the Bayesian probabilistic approach for weighting the reference ontology. The Bayesian approach seems promising when the reference ontology is organized according to a Directed Acyclic Graph (DAG). In particular, in the proposed method the similarity among a user request and semantically annotated resources is evaluated. The user request, as well as each annotated resource, is represented by a set of concepts of the reference ontology. The experimental results of this paper show that the adoption of the Bayesian method for weighting DAG-based reference ontologies allows i-SemSim to outperform the most representative methods selected in the literature.

A Bayesian approach for semantic search based on DAG-shaped ontologies

Formica A;Missikoff M;Taglino F
2017

Abstract

Semantic search has a great potentiality in helping users to make choices, since it appears to outperform traditional keyword-based approaches. This paper presents an ontology-based semantic search method, referred to as influential SemSim (i-SemSim), which relies on the Bayesian probabilistic approach for weighting the reference ontology. The Bayesian approach seems promising when the reference ontology is organized according to a Directed Acyclic Graph (DAG). In particular, in the proposed method the similarity among a user request and semantically annotated resources is evaluated. The user request, as well as each annotated resource, is represented by a set of concepts of the reference ontology. The experimental results of this paper show that the adoption of the Bayesian method for weighting DAG-based reference ontologies allows i-SemSim to outperform the most representative methods selected in the literature.
2017
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Semantic search Bayesian network Semantic annotation Similarity reasoning Weighted reference ontology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact