In this paper, the size- and shape-dependent spectral characteristics of plasmonic nanostructures based on the Thue-Morse (ThMo) sequence are investigated in theory and experiment. We designed, fabricated, and characterized nine different Au nanopillars (NPs) lattices to evaluate their use as nanosensors based on localized surface plasmon resonances (LSPR). The extinction spectra and the bulk refractive index sensitivity (m) are compared to three selected shapes of the NPs (square, circular, and triangular) with different minimum interparticle distance. The maximum m of 275 nm/RIU is obtained for a ThMo pattern with square NPs. Finally, a detection limit of 260 pM (62 pg/ml) of Thiram pesticide has been achieved using an LSPR nanosensor based on an optimized ThMo pattern with triangular NPs employing a phase-sensitive setup to increase the figure-of-merit (FOM) of the sensor.

Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram

Massimo Rippa;Riccardo Castagna;Marianna Pannico;Pellegrino Musto;Volodymyr Tkachenko;Lucia Petti
2017

Abstract

In this paper, the size- and shape-dependent spectral characteristics of plasmonic nanostructures based on the Thue-Morse (ThMo) sequence are investigated in theory and experiment. We designed, fabricated, and characterized nine different Au nanopillars (NPs) lattices to evaluate their use as nanosensors based on localized surface plasmon resonances (LSPR). The extinction spectra and the bulk refractive index sensitivity (m) are compared to three selected shapes of the NPs (square, circular, and triangular) with different minimum interparticle distance. The maximum m of 275 nm/RIU is obtained for a ThMo pattern with square NPs. Finally, a detection limit of 260 pM (62 pg/ml) of Thiram pesticide has been achieved using an LSPR nanosensor based on an optimized ThMo pattern with triangular NPs employing a phase-sensitive setup to increase the figure-of-merit (FOM) of the sensor.
2017
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
PLASMONICS
NANOSTRUCTURES
SENSORS
LSPR
THIRAM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact